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Nonlinear forced vibrations of rectangular plates carrying a central concentrated mass

are studied. The plate is assumed to have immovable edges and rotational springs;

numerical results are presented for clamped plates. The Von Kármán nonlinear plate

theory is used, but in-plane inertia in both the plate and the mass is retrained. The

approach and Lagrange equations taking damping into account. A pseudo-arclength

continuation method is used in order to obtain numerical solutions. Results are

presented as both (i) frequency–amplitude curves and (ii) time domain responses. The

effect of gravity and the effect of the consequent initial plate deflection are also

investigated.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Geometrically nonlinear vibrations of plates are particularly interesting since perfectly flat plates present strong
hardening-type nonlinearity [1]. Sathyamoorthy [2] reviewed the state-of-art research on nonlinear vibrations of plates
until 1987, including some papers dealing with plates carrying concentrated masses. This is an interesting problem that
attracted several investigators. Many studies are available on linear vibrations of plates carrying concentrated masses; e.g.
see Amabili et al. [3]. However, the following review is limited to nonlinear vibrations.

The first known study on nonlinear (large amplitude) vibrations of plates carrying a mass is due to Chiang and Chen [4],
who considered axisymmetric, large amplitude vibrations of a circular plate with inserted concentric rigid mass (not a
concentrated mass). The solution was obtained by using the approximate Berger plate equations. As in all the studies
available in the literature, only free vibrations were studied.

Ramachandran [5] considered nonlinear vibrations of a rectangular plate with simply supported immovable edges
carrying a concentrated mass. The Von Kármán nonlinear plate theory, neglecting in-plane inertia and retaining only a
single dof, was used. The assumed mode shape was the first mode of the plate without any mass, i.e. just a rough
approximation. Results show that while an increase of the mass largely affects the natural frequency, the frequency–
amplitude curve is very little changed. Kanaka Raju [6] studied large amplitude vibrations of circular plates carrying a mass
at different positions by using finite elements. Nonlinear vibrations of orthotropic triangular plates carrying a concentrated
mass were studied by Karmakar [7] by using the Lagrangian function and neglecting in-plane inertia. Karmakar [8] also
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studied the large amplitude vibrations of clamped elliptical plates carrying a concentrated mass by using the Von Kármán
nonlinear plate theory.

Nonlinear vibrations of clamped orthotropic square plate carrying a mass were studied by Banerjee [9]; the Von Kármán
nonlinear plate was used neglecting in-plane inertia and retaining only a single dof. Results were presented only in one
figure which , as discussed in Refs. [10,11], has an error in the scale.

Gutiérrez and Laura [12] investigated large amplitude vibrations of rectangular and circular plates carrying a
concentrated mass. Also in this case, in-plane inertia was neglected and only a single dof was retained by assuming a mode
shape which is the first mode of the plate without any mass attached. Results are obtained for (i) simply supported
immovable and (ii) clamped square plates carrying a mass at the center. In both cases, the numerical results show that the
nondimensional nonlinear frequency (i.e. the nonlinear frequency divided by the linear one) of the fundamental mode is
unchanged by any mass.

The nonlinear transient vibrations of a circular plate with a inserted rigid finite mass were studied by Dumir et al. [13]
by using the Von Kármán nonlinear plate theory and neglecting in-plane inertia. The same problem investigated in Ref. [7]
was re-investigated by Ghosh [14], but both movable and immovable simply supported edges were considered. In-plane
inertia was neglected and only a single dof was retained.

The nonlinear vibrations of a circular plate with a inserted rigid finite mass were studied by Huang and Walker [15],
Huang and Huang [16], Huang [17] and Li et al. [18] by using the Kantorovich averaging method [15,18] and the finite
element method [16,17].

Khodzhaev and Éshmatov [19] studied nonlinear vibrations of a simply supported, rectangular plate carrying
concentrated masses. The plate material is assumed to be viscoelastic. A multi-dof solution is obtained by using the
Bubnov–Galerkin method, neglecting in-plane inertia. Results are obtained for free vibration only and presented in the
time domain. Therefore, the effect of the vibration amplitude on the vibration frequency is not investigated.

This extensive literature review shows that forced vibrations of plates carrying masses have not been studied yet.
Moreover, the limitation of neglecting in-plane inertia is generally used and, in all cases except one, a single dof has been
used for rectangular plates.

Nonlinear forced vibrations of rectangular plates carrying a central concentrated mass are studied in the present work.
The plate is assumed to have immovable edges and rotational springs; numerical results are presented for clamped plates.
The Von Kármán nonlinear plate theory is used, but in-plane inertia in both the plate and the mass is retained. The problem
is discretized into a multi-dof system by using an energy approach and Lagrange equations taking damping into account. A
pseudo-arclength continuation method is used in order to obtain numerical solutions. Results are presented as both (i)
frequency–amplitude curves and (ii) time domain responses. The effect of gravity and the effect of the consequent initial
plate deflection are also investigated.

2. Theory

A rectangular isotropic plate of uniform thickness h and in-plane dimensions a and b are considered and a rectangular
coordinate system (O; x, y, z) is introduced, where the origin O is assumed at a plate corner on the middle plane of the plate,
x and y are the in-plane coordinates and z is the out-of-plane coordinate. At each point of the middle surface of the plate,
the displacements in the x, y, z directions are denoted by u, v, w, respectively. Shear deformation and rotary inertia are
neglected, as usual for thin plates (but this is legitimate also for moderately thick plates in case of isotropic material). The
strain components exx, eyy and gxy at an arbitrary point of the plate at distance z from the middle surface are related to the
middle surface strains ex,0, ey,0 and gxy,0, and to the changes in the curvature and torsion of the middle surface kx, ky and kxy

by the following three relations [1]:

exx ¼ ex,0þzkx, (1)

eyy ¼ ey,0þzky, (2)

gxy ¼ gxy,0þzkxy: (3)

Initial geometric imperfections of the rectangular plate associated with zero initial stress are denoted by normal
displacement w

0
; in-plane initial imperfections and initial stresses are neglected. If Von Kármán hypothesis is used, the

following expressions for the middle surface strains and the changes in the curvature and torsion of the middle surface are
obtained, namely [1]

ex,0 ¼
@u

@x
þ

1

2

@w

@x
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@w0

@x
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kx ¼�
@2w

@x2
, (7)

ky ¼�
@2w

@y2
, (8)

kxy ¼�2
@2w

@x@y
: (9)

These expressions are in general accurate enough for moderately large vibrations of plates.

2.1. Elastic strain energy

The elastic strain energy UP of a rectangular isotropic plate, under Kirchhoff’s hypothesis szz=tzx=tzy=0, is given by [1]

UP ¼
1

2

Z a

0

Z b

0

Z h=2

�h=2
ðsxxexxþsyyeyyþtxygxyÞdx dy dz, (10)

where sxx, syy and txy are the Kirchhoff stresses and exx, eyy and gxy are Green’s strains. The Kirchhoff stresses are related to
the Green’s strains within the limit of elasticity of the plate’s material

sxx ¼
E

1�n2
ðexxþneyyÞ, syy ¼

E

1�n2
ðeyyþnexxÞ, txy ¼

E

2ð1þnÞ
gxy, (11213)

where E is the Young’s modulus and n is the Poisson’s ratio. The simplicity of Eq. (10) is due to the Lagrangian description of
the plate, which allows integration over the plate in the original undeformed configuration.

2.2. Kinetic energy and virtual work of external forces

The kinetic energy TP of a rectangular plate carrying a central concentrated mass M, by neglecting rotary inertia, is given
by

TP ¼
1

2
Mð _u2

þ _v2
þ _w2

Þjx ¼ a=2,y ¼ b=2þ
1

2
rPh

Z a

0

Z b

0
ð _u2
þ _v2
þ _w2

Þdx dy, (14)

where r
P

is the mass density of the plate. In Eq. (14) the overdot denotes a time derivative.
The virtual work W done by the external forces is written as

W ¼

Z a

0

Z b

0
ðqxuþqyvþqzwÞdx dy, (15)

where qx, q
y

and qz are the distributed forces per unit area acting in x-, y- and z-direction, respectively. In the present study,
a single harmonic force orthogonal to the plate is considered; therefore, qx=q

y
=0. In some cases, the mass M and the plate

are subjected to a gravity field, which is assumed to have the z-direction. The external distributed load qz is applied to the
plate, due to the concentrated force ~f , is given by

qz ¼
~f dðy� ~yÞdðx� ~xÞcosðotÞ, (16)

where o is the excitation frequency, t is the time, d is the Dirac delta function, ~f is the force magnitude positive in
z-direction; ~x and ~y give the position of the point of application of the force. The contribution given by the vertical gravity
field to qz is a static pressure having the following distribution:

qz ¼Mgdðy�b=2Þdðx�a=2ÞþrPhg, (17)

where g is the gravity acceleration.

2.3. Boundary conditions and discretization

Plates with fixed edges are considered. The following boundary conditions are introduced for plates with fixed edges:

u¼ v¼w¼w0 ¼ 0, Mx ¼ 8k @w=@x at x¼ 0,a, (18a2e)

u¼ v¼w¼w0 ¼ 0, My ¼ 8k @w=@y at y¼ 0,b, (19a2e)

where k is the stiffness per unit length of the elastic, distributed rotational springs placed at the four edges, x=0, a and y=0,
b; the minus sign in Eqs. (18e) and (19e) applies at the boundaries x=0 and y=0. Equations (18e) and (19e) represent the
case of an elastic rotational constraint at the shell edges. They give any rotational constraint from zero bending moment
(Mx=0 and My=0, unconstrained rotation, obtained for k=0) to perfectly clamped plate (@w=@x¼ 0 and @w=@y¼ 0, obtained
as limit for k-N), according to the value of k.
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The displacements u, v and w are expanded by using the following expressions, which satisfy identically the geometric
boundary conditions (18a–c) and (19a–c):

uðx,y,tÞ ¼
XI

i ¼ 1

XN

n ¼ 1

u2i,nðtÞsinð2ipx=aÞsinðnpy=bÞ, (20a)

vðx,y,tÞ ¼
XI

i ¼ 1

XN

n ¼ 1

vi,2nðtÞsinðipx=aÞsinð2npy=bÞ, (20b)

wðx,y,tÞ ¼
XÎ

i ¼ 1

XN̂

n ¼ 1

wi,nðtÞsinðipx=aÞsinðnpy=bÞ, (20c)

where i and n are the numbers of half-waves in x- and y- direction, respectively, and t is the time; ui,n(t), vi,n(t) and wi,n(t)
are the generalized coordinates, which are unknown functions of t. I and N indicate the terms necessary in the expansion of
the in-plane displacements and, in general, are larger than Î and N̂ , respectively, which indicate the terms in the expansion
of w.

On the other hand, Eqs. (18e) and (19e) can be rewritten in the following form:

Mx ¼
Eh3

12ð1�n2Þ
ðkxþn kyÞ ¼ 8k @w=@x at x¼ 0,a, (21)

My ¼
Eh3

12ð1�n2Þ
ðkyþnkxÞ ¼ 8k@w=@y at y¼ 0,b: (22)

These boundary conditions are nongeometric. For this reason, Eqs. (20) do not have to satisfy Eqs. (21) and (22) since
they are automatically satisfied by energy minimization. If k is different from zero, an additional potential energy stored by
the elastic rotational springs at the plate edges must be added to the potential energy of the plate. This potential energy UR

is given by

UR ¼
1

2

Z b

0
k

@w

@x

� �
x ¼ 0
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þ
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@x
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( )
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1

2

Z a

0
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@w

@y

� �
y ¼ 0

" #2

þ
@w

@y

� �
y ¼ b

" #2
8<
:

9=
;dx: (23)

In order to simulate clamped edges in numerical calculations, a very high value of the stiffness k must be assumed. This
approach is usually referred as the artificial spring method [1,20], which can be regarded as a variant of the classical
penalty method. The values of the spring stiffness simulating a clamped plate can be obtained by studying the convergence
of the natural frequencies of the linearized solution by increasing the value of k. In fact, it was found that the natural
frequencies of the system converge asymptotically with those of a clamped plate when k becomes very large.

Initial geometric imperfections of the rectangular plate are considered only in the z-direction. They are associated with
zero initial stress. The imperfection w0 is expanded in the same form of w, i.e. in a double Fourier sine series satisfying the
boundary conditions (18d) and (19d) at the plate edges

w0ðx,yÞ ¼
X~I
i ¼ 1

X~N
n ¼ 1

Ai,n sinðipx=aÞsinðnpy=bÞ, (24)

where Ai,n are the modal amplitudes of imperfections; ~N and ~I are integers indicating the number of terms in the
expansion. Geometric imperfections are introduced here but they are not investigated numerically in the present study.

2.4. Lagrange equations of motion

The nonconservative damping forces are assumed to be of viscous type and are taken into account by using the
Rayleigh’s dissipation function

F ¼
1

2
c

Z a

0

Z b

0
ð _u2
þ _v2
þ _w2

Þdx dy, (25)

where c has a different value for each term of the mode expansion. Simple calculations give

F ¼
1

2
ðab=4Þ

XÎ

i ¼ 1

XN̂

n ¼ 1

ci,n _w
2
i,nþ

XI

i ¼ 1

XN

n ¼ 1

ci,n _u
2
i,nþ

XI

i ¼ 1

XN

n ¼ 1

ci,n _v
2
i,n

2
4

3
5: (26)

The damping coefficient ci,n is related to modal damping ratio (in this case it is a damping ratio of the generalized
coordinate), that can be evaluated from experiments, by Bi,n ¼ ~ci,n=ð2mi,noi,nÞ, where oi,n is the natural circular frequency of
mode (i, n) and ~ci,n is the damping coefficient obtained after diagonalization of the mass matrix (see Section 2.5). mi,n is the
mass associated with this generalized coordinate after diagonalization of the mass matrix.
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The following notation is introduced for brevity:

q¼ fui,n,vi,n,wi,ng
T, i¼ 1, . . . , I or Î and n¼ 1, . . . , N or N̂ : (27)

The generic element of the time-dependent vector q is referred to as qj, which is the generalized coordinate; the
dimension of q is N , which is the number of dof used in the mode expansion.

The generalized forces Qj are obtained by differentiation of the Rayleigh’s dissipation function and of the virtual work
done by external forces

Qj ¼�
@F

@ _qj

þ
@W

@qj
: (28)

The Lagrange equations of motion are

d

dt

@TP

@ _qj

 !
�
@TP

@qj
þ
@U

@qj
¼ Qj, j¼ 1, . . . , N , (29)

where @TP=@qj ¼ 0 and the potential energy is given by U=UP+UR, where UP is given by Eq. (10) and UR by Eq. (23). These
second-order equations have very long expressions containing quadratic and cubic nonlinear terms. In particular, the only
term containing nonlinearities is

@U

@qj
¼
XN

k ¼ 1

fm,jqmþ
XN

m,k ¼ 1

fm,k,jqmqkþ
XN

m,k,l ¼ 1

fm,k,l,jqmqkql, (30)

where coefficients f have long expressions that also include geometric imperfections. Quadratic nonlinearities of the type
qm

2 (in particular for qm=wi,n) are never present in the equations of motion of perfect flat plates. This is a difference with
respect to curved panels and it is physically explained by the fact that no different displacement is observed for flat plates
Fig. 1. Shape of the fundamental mode of the plate with and without concentrated mass neglecting gravity. (a) A 3-D representation for mass of 0.1 kg;

(b) cross-section at x=a/2; –, plate without mass; ——, plate with mass 0.025 kg and , plate with mass 0.1 kg.
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in z- and �z-direction, due to the symmetry. Presence of quadratic nonlinearities is the reason for significant asymmetric
displacement in z and �z that is observed in the results in case of initial geometric imperfections or mass load in gravity
field.
2.5. Inertial decoupling of the equations of motion

For plates with concentrated mass, inertial coupling arises in the equations of motion so that they cannot be
immediately transformed in the form required for numerical integration. In particular, the equations of motion take the
following form:

M €qþC _qþ½KþN2ðqÞþN3ðq,qÞ�q¼ f0 cosðotÞþf1, (31)

where M is the nondiagonal mass matrix of dimension N � N (N being the number of dof), C is the damping matrix, K is the
linear stiffness matrix, which does not present terms involving q, N2 is the matrix that involves linear terms in q, therefore,
giving the quadratic nonlinear stiffness terms, N3 is a matrix that involves quadratic terms in q, therefore, giving the cubic
nonlinear stiffness terms, f0 is the vector of excitation amplitudes, f1 is the vector of the gravity load and q is the vector of
the N generalized coordinates, defined in Eq. (27). In particular, by using Eq. (30), the generic elements km,j, n2m,j and n3m,j,
of the matrices K, N2 and N3, respectively, are given by

km,j ¼ fm,j, n2m,j
ðqÞ ¼

XN

k ¼ 1

fm,k,jqk, n3m,j
ðq,qÞ ¼

XN

k,l ¼ 1

fm,k,l,jqkql: (32a2c)
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Fig. 2. Frequency-response curve of the plate with concentrated mass of 0.025 kg; excitation at the center with ~f ¼ 0:482 N in the frequency

neighborhood of the first resonance; results show the first harmonic only; z1,1=0.012; 39 dofs; ——, stable solution; - -, unstable solution. (a) Response at

the center of the plate; (b) maximum of the generalized coordinate w1,1; (c) maximum of the generalized coordinate w3,1; (d) maximum of the

generalized coordinate w5,1; (e) maximum of the generalized coordinate w1,3; (f) maximum of the generalized coordinate w3,3; (g) maximum of the

generalized coordinate w1,5 and (h) maximum of the generalized coordinate u2,1.
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Fig. 3. Comparison of frequency-responses at the center of plates with and without concentrated masses; z1,1=0.012; ——, plate without mass,
~f ¼ 0:392 N; - - , plate with mass 0.025 kg, ~f ¼ 0:482 N; , plate with mass 0.1 kg, ~f ¼ 0:303 N.
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Eq. (31) is pre-multiplied by M�1 in order to diagonalize the mass matrix, as a consequence that the matrix M is always
invertible; the result is

I €qþM�1C _qþ½M�1KþM�1N2ðqÞþM�1N3ðq,qÞ�q¼M�1f0 cosðotÞþM�1f1, (33)

where I is the unit matrix. Eq. (33) can be rewritten in the following form:

I €qþ ~C _qþ½ ~KþM�1N2ðqÞþM�1N3ðq,qÞ�q¼ ~f 0 cosðotÞþ ~f 1, (34)
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Fig. 4. Time response at the resonance peak of the plate without concentrated mass; z1,1=0.012. (a) Force excitation; (b) maximum of the generalized
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where

~C ¼M�1C, ~K ¼M�1K, ~f 0 ¼M�1f0 and ~f 1 ¼M�1f1: (35a2d)

Here, modal damping is assumed for simplicity, so that ~C is a diagonal matrix. Eq. (34) is in the form suitable for
numerical integration.
3. Numerical results

The generic jth Lagrange equation is transformed in two first-order equations; this is possible since the equations have
been decoupled with respect to inertia. A non-dimensionalization of variables is also performed for computational
convenience; the frequencies are divided by the natural radian frequency oi,n of the mode (i, n) investigated, and the
vibration amplitudes are divided by the plate thickness h. The resulting 2� N equations are studied by using the software
AUTO 97 [21] for continuation and bifurcation analysis of nonlinear ordinary differential equations. The software AUTO is
capable of continuation of the solution, bifurcation analysis and branch switching by using pseudo-arclength continuation
[1] and collocation methods. In particular, the plate response under harmonic excitation has been studied by using an
analysis in three steps: (i) for zero excitation, the static load due to the gravity acceleration is used as bifurcation
parameter; the solution has been started at zero static load where the solution is the trivial undisturbed configuration of
the plate and has been continued up to reach the desired magnitude of the static load; (ii) then, the excitation frequency
has been fixed far enough from resonance and the magnitude of the excitation has been used as bifurcation parameter; the
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solution has been continued using as restarting point the deformed configuration obtained at step (i); (iii) when the
desired magnitude of excitation has been reached, the solution has been continued by using the excitation frequency as
bifurcation parameter.

Calculations have been performed for a rectangular AISI 304 stainless steel plate with the following dimensions and
material properties: a=0.25 m, b=0.24 m, h=0.0005 m, E=198�109 Pa, r=7850 kg/m3 and n=0.3. This plate has
fundamental mode (i=1, n=1) with radian frequency o1,1=78.3�2p rad/s (with a model with 108 dof) for clamped
edges simulated with k=105 N/rad. The plate is considered for harmonic excitation around the fundamental resonance, at
the plate center (at x=a/2 and y=b/2), of magnitude ~f ¼ 0:392 N, assuming modal damping z1,1=0.012 (the same damping
ratio is assumed for all the generalized coordinates). Present results have been obtained by using a model with 39 dofs, i.e.
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with 39 generalized coordinates. In particular, they are: w1,1, w3,1, w5,1, w7,1, w1,3, w3,3, w5,3, w7,3, w1,5, w3,5, w5,5, w1,7, w3,7,
u2,1, u4,1, u6,1, u8,1, u2,3, u4,3, u6,3, u8,3, u2,5, u4,5, u6,5, u2,7, u4,7, v1,2, v3,2, v5,2, v7,2, v1,4, v3,4, v5,4, v7,4, v1,6, v3,6, v5,6, v1,8, v3,8. This
model has been proved to be accurate for plates without masses by Amabili [22]. Then, two cases with concentrated mass
at the center of the plate have been considered. The first case is a concentrated mass of 0.025 kg; this mass is small enough
to represent added sensors (piezoelectric load cell and accelerometer) during experimental modal analysis. The radian
frequency of the plate with the small mass attached is o1,1=59.1�2p rad/s and it has been studied with excitation
~f ¼ 0:482 N. Finally, a plate carrying a larger concentrated mass has been studied. The mass is 0.1 kg, the radian frequency
o1,1=38.2�2p rad/s and the excitation ~f ¼ 0:303 N. All the other parameters (damping, dof and stiffness of rotational
springs) are unchanged.
3.1. Numerical results neglecting gravity

Fig. 1 shows the shape of the fundamental mode (i=1 and n=1) of the clamped plate without and with a concentrated
mass of 0.025 and 0.1 kg. Fig. 1(b) clearly shows that the effect of the mass is that of slightly concentrating the movement
at the mass location, i.e. at the center of the plate. This is obtained by solving the linear eigenvalue problem.

The maximum plate oscillation at the center of the plate carrying a concentrated mass of 0.025 kg is presented in
Fig. 2(a) for harmonic excitation of 0.482 N applied at the center of the plate in the frequency neighborhood of the
fundamental mode. It is evident that the clamped boundary condition gives strong hardening-type nonlinearity. The
strange behavior near the response peak is due to two 3:1 internal resonances: (i) between mode (1,1) and the second
mode for o=1.29�o1,1 and (ii) between mode (1,1) and the third mode for o=1.68�o1,1. The contributions of the most
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significant generalized coordinates to the response shown in Fig. 2(a) are plotted in Fig. 2(b–h), where internal resonances
are evident.

The comparison of the maximum plate oscillation at the center of the plate without mass and with concentrated mass
(0.025 and 0.1 kg) is shown in Fig. 3. Results show that increasing the concentrated mass, the system changes slightly the
trend of nonlinearity, specifically decreasing the hardening-type nonlinearity. However, the difference in the trend of
nonlinearity is small. The cases without mass and with smaller mass (0.025 kg) present a rounded tip at the resonance peak
due to internal resonances, while the case with larger concentrated mass of 0.1 kg does not present internal resonances, so
the tip of the response is sharper. Also interesting is that the concentrated mass is amplifying the response at the mass
location, more than in the small amplitude (linear) vibrations.

Results presented in Fig. 3 are in good agreement with the free vibration results obtained by Gutiérrez and Laura [12]
for clamped square plates. In fact, for clamped square plates without mass or with any mass at their center, they found a
frequency of the fundamental mode of 1.066o1,1 for vibration amplitude 0.6h, and a frequency 1.17o1,1 for vibration
amplitude h. Since our plate is almost square (b/a=0.96), our results can be practically directly compared to those obtained
by Gutiérrez and Laura [12]. The curve showing the free vibration frequency as a function of the vibration amplitude is
named backbone curve and it lies ‘‘in the middle’’ of the forced response curve shown in Fig. 3. The backbone curve
obtained by Gutiérrez and Laura [12] is close enough to the middle of the forced response curves shown in Fig. 3 for any of
the three cases considered with different masses and no mass; this is a good validation of the present approach.

The time response at the resonance peak of the clamped plate without concentrated mass is shown in Fig. 4 for the main
generalized coordinates and the response at the center of the plate, together with the excitation and the frequency
spectrum. Results show that the main generalized coordinate w1,1 has almost no contribution of higher harmonics, which
appear on the other coordinates. Anyway, the plate oscillation at the center has just a smaller contribution of the third
harmonics. On the other hand, Fig. 5 shows a much larger contribution of the third harmonic to both w1,1 and the
oscillation at the center in case of concentrated mass of 0.025 kg. Finally, since no internal resonances are activated, the
time response at the resonance peak in case of mass 0.1 kg has practically no contribution of higher harmonics on both w1,1

and the oscillation at the center of the plate, as shown in Fig. 6.
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3.2. Numerical results in vertical gravity field

A vertical gravity field is now assumed to be acting on the plate and the concentrated mass, with direction opposite to
the bending deflection w. The gravity acceleration g=9.81 m/s2 is assumed. Here, the plate with mass of 0.1 kg is considered
since this is the case where the gravity plays the larger role. As a consequence of the gravity acceleration, the plate has an
initial static deflection. The forced vibration is now calculated starting from the initial bended configuration of the plate,
which is no longer plane and unstressed before vibrating. The maximum amplitude of the main generalized coordinate w1,1

is plotted in Fig. 7(a) versus the results of the same case neglecting the gravity acceleration. The response of the plate, due
to the initial deflection, is less hardening than the one obtained neglecting it. It also starts from a value below zero since
there is an initial negative deflection. Moreover, the natural frequency is slightly increased to about 4%, due to the initial
deformation. The minimum of the same generalized coordinate is shown in Fig. 7(b).
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4. Conclusions

Results for large amplitude vibrations of rectangular plates carrying a central concentrated mass show that increasing
the concentrated mass, the system changes slightly the trend of nonlinearity, specifically decreasing the hardening-type
nonlinearity. However, the difference in the trend of nonlinearity is small and this may be useful information when
performing experiments on plates using attached sensors (load cell and accelerometer); an added mass is not changing
significantly the trend of the nonlinear response if the gravity is not playing a role (vertical plate). Anyway a concentrated
mass is amplifying the response at the mass location and is also decreasing the natural frequency.

In case of horizontal plates, gravity may play a significant role in changing the trend of nonlinearity and increasing the
natural frequency with respect to the one obtained by neglecting gravity. Moreover, the initial deflection of the plate
breaks the symmetry of the response introducing larger deflection inward the bended plate.
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[19] D.A. Khodzhaev, B.Kh. Éshmatov, Nonlinear vibrations of a viscoelastic plate with concentrated masses, Journal of Applied Mechanics and Technical

Physics 48 (2007) 905–914.
[20] S. Ilanko, Existence of natural frequencies of systems with artificial restraints and their convergence in asymptotic modelling, Journal of Sound and

Vibration 255 (2002) 883–898.
[21] E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznetsov, B. Sandstede, X. Wang, AUTO 97: Continuation and Bifurcation Software for Ordinary

Differential Equations (with HomCont), Concordia University, Montreal, Canada, 1998.
[22] M. Amabili, Nonlinear vibrations of rectangular plates with different boundary conditions: theory and experiments, Computers and Structures 82

(2004) 2587–2605.


	Geometrically nonlinear vibrations of rectangular plates carrying a concentrated mass
	Introduction
	Theory
	Elastic strain energy
	Kinetic energy and virtual work of external forces
	Boundary conditions and discretization
	Lagrange equations of motion
	Inertial decoupling of the equations of motion

	Numerical results
	Numerical results neglecting gravity
	Numerical results in vertical gravity field

	Conclusions
	Acknowledgements
	References




